Bellman Ford Algorithm | Single-Source Shortest Path

·

4 min read

Bellman–Ford algorithm finds shortest path from the source vertex to all vertices in the graph. The graph can contain negative-weight edges, but it should not contain a negative-weight cycle that is reachable from the source vertex.

The algorithm returns TRUE if there is no negative-weight cycle and FALSE if there is a negative-weight cycle reachable from the source vertex. If there is a negative-weight cycle that is reachable from source vertex, then no solution exists.

![Bellman-Ford]({{ site.url }}/assets/bellman.png){:class="img-responsive"}

In fig. (a) there is no negative-weight cycle, so Bellman Ford algorithm finds the shortest path from source if fig. (a) is in a graph whereas fig. (b) contains a negative-weight cycle therefore no solution exists.

![Bellman-Ford]({{ site.url }}/assets/bellman1.png){:class="img-responsive"} ![Bellman-Ford]({{ site.url }}/assets/bellman2.png){:class="img-responsive"}

In fig. (a) the graph is in inital configuration. All vertices were at distance infinity from source vertex a. Then vertices b and c are reached and their distance from vertex a is updated.

In fig. (d) the sum of distance of path a -> b -> d is 2 + 5 = 7 whereas sum of distance of path a -> c -> d is 7 + (-3) = 4. Hence path a -> c -> d is preferred which is shown in red line. In fig. (e) red line shows shortest path from a to e.

Implementation

A data structure is needed to store the distance of a vertex from the source vertex.

Here is the implementation of bellman_ford and relax function.

struct Vertex
    {
        std::size_t id;
        int distance = std::numeric_limits<int>::max();
        Vertex(std::size_t id) : id(id) {}
    };

void relax(std::size_t src, std::size_t dest, int weight)
{
    if (vertices[dest].distance > (vertices[src].distance + weight))
    {
        vertices[dest].distance = (vertices[src].distance + weight);
    }
}

bool bellman_ford(std::size_t src)
{
    //initialize distance of source
    vertices[src].distance = 0;

    for (int i = 0; i < vertices.size() - 1; i++)
    {
        for (auto it = edge_weight.begin(); it != edge_weight.end(); it++)
        {
            relax(it->first.first, it->first.second, it->second);
        }
    }

    for (auto it = edge_weight.begin(); it != edge_weight.end(); it++)
    {
        if (vertices[it->first.second].distance
            > (vertices[it->first.first].distance + it->second))
           return false;
    }
    return true;
}

{% include ads.html %}

relax function updates the distance of the vertex from the source vertex if new calculated distance is smaller than the stored distance.

The time complexity of Bellman Ford algorithm is O(nm) where n is the number of vertices and m is the number of edges.

Related: [Dijkstra's Algorithm]({{ site.url }}/blog/2018/03/14/C++-Dijkstra's-Algorithm-using-STL)

Here is the C++ Implementation of Bellman-Ford Algorithm

#include <iostream>
#include <vector>
#include <limits>
#include <map>

class Graph
{

    struct Vertex
    {
        std::size_t id;
        int distance = std::numeric_limits<int>::max();
        Vertex(std::size_t id) : id(id) {}
    };
    std::vector<Vertex> vertices;
    std::map<std::pair<std::size_t, std::size_t>, int> edge_weight;

  public:
    Graph(std::size_t);
    void add_edge(std::size_t, std::size_t, int); //source, destination, weight
    bool bellman_ford(std::size_t); //source
    std::ostream& distance_from_source(std::ostream&) const;

  private:
    void relax(std::size_t, std::size_t, int); //source, destination, weight
};

Graph::Graph(std::size_t size)
{
    vertices.reserve(size);
    for (int i = 0; i < size; i++)
    {
        vertices.push_back(Vertex(i));
    }
}

void Graph::add_edge(std::size_t src, std::size_t dest, int weight)
{
    if (src == dest)
        throw std::logic_error("Source and destination vertices are same");

    if (src < 0 || vertices.size() <= src)
        throw std::out_of_range("Enter correct source vertex");

    if (dest < 0 || vertices.size() <= dest)
        throw std::out_of_range("Enter correct destination vertex");

    const auto inserted = edge_weight.insert(std::make_pair(
                          std::make_pair(src, dest), weight ));
    if (!inserted.second)
        throw std::logic_error("Existing edge");
}

void Graph::relax(std::size_t src, std::size_t dest, int weight)
{
    if (vertices[dest].distance > (vertices[src].distance + weight))
    {
        vertices[dest].distance = (vertices[src].distance + weight);
    }
}

bool Graph::bellman_ford(std::size_t src)
{
    //initialize distance of source
    vertices[src].distance = 0;

    for (int i = 0; i < vertices.size() - 1; i++)
    {
        for (auto it = edge_weight.begin(); it != edge_weight.end(); it++)
        {
            relax(it->first.first, it->first.second, it->second);
        }
    }

    for (auto it = edge_weight.begin(); it != edge_weight.end(); it++)
    {
        if (vertices[it->first.second].distance
            > (vertices[it->first.first].distance + it->second))
           return false;
    }
    return true;
}

std::ostream& Graph::distance_from_source(std::ostream& os) const
{
    os << "Vertex\t\tDistance from Source\n";
    for (int i = 0; i < vertices.size(); i++)
    {
        os << vertices[i].id <<"\t\t" << vertices[i].distance <<"\n";
    }
}


int main()
{
    Graph grp(5);
    grp.add_edge(0, 1, 6);
    grp.add_edge(0, 2, 7);
    grp.add_edge(1, 3, 5);
    grp.add_edge(1, 4, -4);
    grp.add_edge(1, 2, 8);
    grp.add_edge(2, 3, -3);
    grp.add_edge(2, 4, 9);
    grp.add_edge(3, 1, -2);
    grp.add_edge(4, 0, 2);
    grp.add_edge(4, 3, 7);

    bool res = grp.bellman_ford(0);
    if (res == true)
       std::cout << "Graph contains no negative cycle \n";
    else
       std::cout << "Graph conatins negative cycle \n";

    grp.distance_from_source(std::cout);
}

Output

![Output]({{ site.url }}/assets/BellmanOut.png){:class="img-responsive"}

Get this post in pdf - Bellman Ford Algorithm

Reference:
Introduction to Algorithms
The Algorithm Design Manual
Data Structures and Algorithms Made Easy
Competitive Programmer’s Handbook - Antti Laaksonen

You may also like
[Breadth First Search using Adjacency List | Graph traversal]({{ site.url }}/blog/2018/03/06/C++-Breadth-First-Search-using-Adjacency-List)
[Depth First Search using Adjacency List | Graph traversal]({{ site.url }}/blog/2018/03/05/C++-Depth-First-Search-using-Adjacency-List)